Annals of Thoracic Medicine Official publication of the Saudi Thoracic Society, affiliated to King Saud University
 
Search Ahead of print Current Issue Archives Instructions Subscribe e-Alerts Login 
Home Email this article link Print this article Bookmark this page Decrease font size Default font size Increase font size
REVIEW ARTICLE
Year : 2020  |  Volume : 15  |  Issue : 4  |  Page : 190-198

Ventilator dyssynchrony – Detection, pathophysiology, and clinical relevance: A Narrative review


1 Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
2 Department of Pediatrics, Division of Clinical Informatics, University of Colorado, Aurora, Colorado, USA
3 Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA

Correspondence Address:
Dr. Peter D Sottile
12700 E, 19th Ave, Research Complex 2, C272, Aurora, CO 80045
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/atm.ATM_63_20

Rights and Permissions

Mortality associated with the acute respiratory distress syndrome remains unacceptably high due in part to ventilator-induced lung injury (VILI). Ventilator dyssynchrony is defined as the inappropriate timing and delivery of a mechanical breath in response to patient effort and may cause VILI. Such deleterious patient–ventilator interactions have recently been termed patient self-inflicted lung injury. This narrative review outlines the detection and frequency of several different types of ventilator dyssynchrony, delineates the different mechanisms by which ventilator dyssynchrony may propagate VILI, and reviews the potential clinical impact of ventilator dyssynchrony. Until recently, identifying ventilator dyssynchrony required the manual interpretation of ventilator pressure and flow waveforms. However, computerized interpretation of ventilator waive forms can detect ventilator dyssynchrony with an area under the receiver operating curve of >0.80. Using such algorithms, ventilator dyssynchrony occurs in 3%–34% of all breaths, depending on the patient population. Moreover, two types of ventilator dyssynchrony, double-triggered and flow-limited breaths, are associated with the more frequent delivery of large tidal volumes >10 mL/kg when compared with synchronous breaths (54% [95% confidence interval (CI), 47%–61%] and 11% [95% CI, 7%–15%]) compared with 0.9% (95% CI, 0.0%–1.9%), suggesting a role in propagating VILI. Finally, a recent study associated frequent dyssynchrony-defined as >10% of all breaths-with an increase in hospital mortality (67 vs. 23%, P = 0.04). However, the clinical significance of ventilator dyssynchrony remains an area of active investigation and more research is needed to guide optimal ventilator dyssynchrony management.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed12159    
    Printed232    
    Emailed0    
    PDF Downloaded1437    
    Comments [Add]    
    Cited by others 6    

Recommend this journal